Logging
Viewing logs
Kernel messages can be retrieved with talosctl dmesg
command:
$ talosctl -n 172.20.1.2 dmesg
172.20.1.2: kern: info: [2021-11-10T10:09:37.662764956Z]: Command line: init_on_alloc=1 slab_nomerge pti=on consoleblank=0 nvme_core.io_timeout=4294967295 random.trust_cpu=on printk.devkmsg=on ima_template=ima-ng ima_appraise=fix ima_hash=sha512 console=ttyS0 reboot=k panic=1 talos.shutdown=halt talos.platform=metal talos.config=http://172.20.1.1:40101/config.yaml
[...]
Service logs can be retrieved with talosctl logs
command:
$ talosctl -n 172.20.1.2 services
NODE SERVICE STATE HEALTH LAST CHANGE LAST EVENT
172.20.1.2 apid Running OK 19m27s ago Health check successful
172.20.1.2 containerd Running OK 19m29s ago Health check successful
172.20.1.2 cri Running OK 19m27s ago Health check successful
172.20.1.2 etcd Running OK 19m22s ago Health check successful
172.20.1.2 kubelet Running OK 19m20s ago Health check successful
172.20.1.2 machined Running ? 19m30s ago Service started as goroutine
172.20.1.2 trustd Running OK 19m27s ago Health check successful
172.20.1.2 udevd Running OK 19m28s ago Health check successful
$ talosctl -n 172.20.1.2 logs machined
172.20.1.2: [talos] task setupLogger (1/1): done, 106.109µs
172.20.1.2: [talos] phase logger (1/7): done, 564.476µs
[...]
Container logs for Kubernetes pods can be retrieved with talosctl logs -k
command:
$ talosctl -n 172.20.1.2 containers -k
NODE NAMESPACE ID IMAGE PID STATUS
172.20.1.2 k8s.io kube-system/kube-flannel-dk6d5 k8s.gcr.io/pause:3.5 1329 SANDBOX_READY
172.20.1.2 k8s.io └─ kube-system/kube-flannel-dk6d5:install-cni ghcr.io/siderolabs/install-cni:v0.7.0-alpha.0-1-g2bb2efc 0 CONTAINER_EXITED
172.20.1.2 k8s.io └─ kube-system/kube-flannel-dk6d5:install-config quay.io/coreos/flannel:v0.13.0 0 CONTAINER_EXITED
172.20.1.2 k8s.io └─ kube-system/kube-flannel-dk6d5:kube-flannel quay.io/coreos/flannel:v0.13.0 1610 CONTAINER_RUNNING
172.20.1.2 k8s.io kube-system/kube-proxy-gfkqj k8s.gcr.io/pause:3.5 1311 SANDBOX_READY
172.20.1.2 k8s.io └─ kube-system/kube-proxy-gfkqj:kube-proxy k8s.gcr.io/kube-proxy:v1.24.2 1379 CONTAINER_RUNNING
$ talosctl -n 172.20.1.2 logs -k kube-system/kube-proxy-gfkqj:kube-proxy
172.20.1.2: 2021-11-30T19:13:20.567825192Z stderr F I1130 19:13:20.567737 1 server_others.go:138] "Detected node IP" address="172.20.0.3"
172.20.1.2: 2021-11-30T19:13:20.599684397Z stderr F I1130 19:13:20.599613 1 server_others.go:206] "Using iptables Proxier"
[...]
Sending logs
Service logs
You can enable logs sendings in machine configuration:
machine:
logging:
destinations:
- endpoint: "udp://127.0.0.1:12345/"
format: "json_lines"
- endpoint: "tcp://host:5044/"
format: "json_lines"
Several destinations can be specified.
Supported protocols are UDP and TCP.
The only currently supported format is json_lines
:
{
"msg": "[talos] apply config request: immediate true, on reboot false",
"talos-level": "info",
"talos-service": "machined",
"talos-time": "2021-11-10T10:48:49.294858021Z"
}
Messages are newline-separated when sent over TCP.
Over UDP messages are sent with one message per packet.
msg
, talos-level
, talos-service
, and talos-time
fields are always present; there may be additional fields.
Kernel logs
Kernel log delivery can be enabled with the talos.logging.kernel
kernel command line argument, which can be specified
in the .machine.installer.extraKernelArgs
:
machine:
install:
extraKernelArgs:
- talos.logging.kernel=tcp://host:5044/
Kernel log destination is specified in the same way as service log endpoint.
The only supported format is json_lines
.
Sample message:
{
"clock":6252819, // time relative to the kernel boot time
"facility":"user",
"msg":"[talos] task startAllServices (1/1): waiting for 6 services\n",
"priority":"warning",
"seq":711,
"talos-level":"warn", // Talos-translated `priority` into common logging level
"talos-time":"2021-11-26T16:53:21.3258698Z" // Talos-translated `clock` using current time
}
extraKernelArgs
in the machine configuration are only applied on Talos upgrades, not just by applying the config. (Upgrading to the same version is fine).
Filebeat example
To forward logs to other Log collection services, one way to do this is sending them to a Filebeat running in the cluster itself (in the host network), which takes care of forwarding it to other endpoints (and the necessary transformations).
If Elastic Cloud on Kubernetes is being used, the following Beat (custom resource) configuration might be helpful:
apiVersion: beat.k8s.elastic.co/v1beta1
kind: Beat
metadata:
name: talos
spec:
type: filebeat
version: 7.15.1
elasticsearchRef:
name: talos
config:
filebeat.inputs:
- type: "udp"
host: "127.0.0.1:12345"
processors:
- decode_json_fields:
fields: ["message"]
target: ""
- timestamp:
field: "talos-time"
layouts:
- "2006-01-02T15:04:05.999999999Z07:00"
- drop_fields:
fields: ["message", "talos-time"]
- rename:
fields:
- from: "msg"
to: "message"
daemonSet:
updateStrategy:
rollingUpdate:
maxUnavailable: 100%
podTemplate:
spec:
dnsPolicy: ClusterFirstWithHostNet
hostNetwork: true
securityContext:
runAsUser: 0
containers:
- name: filebeat
ports:
- protocol: UDP
containerPort: 12345
hostPort: 12345
The input configuration ensures that messages and timestamps are extracted properly. Refer to the Filebeat documentation on how to forward logs to other outputs.
Also note the hostNetwork: true
in the daemonSet
configuration.
This ensures filebeat uses the host network, and listens on 127.0.0.1:12345
(UDP) on every machine, which can then be specified as a logging endpoint in
the machine configuration.
Fluent-bit example
First, we’ll create a value file for the fluentd-bit
Helm chart.
# fluentd-bit.yaml
podAnnotations:
fluentbit.io/exclude: 'true'
extraPorts:
- port: 12345
containerPort: 12345
protocol: TCP
name: talos
config:
service: |
[SERVICE]
Flush 5
Daemon Off
Log_Level warn
Parsers_File custom_parsers.conf
inputs: |
[INPUT]
Name tcp
Listen 0.0.0.0
Port 12345
Format json
Tag talos.*
[INPUT]
Name tail
Alias kubernetes
Path /var/log/containers/*.log
Parser containerd
Tag kubernetes.*
[INPUT]
Name tail
Alias audit
Path /var/log/audit/kube/*.log
Parser audit
Tag audit.*
filters: |
[FILTER]
Name kubernetes
Alias kubernetes
Match kubernetes.*
Kube_Tag_Prefix kubernetes.var.log.containers.
Use_Kubelet Off
Merge_Log On
Merge_Log_Trim On
Keep_Log Off
K8S-Logging.Parser Off
K8S-Logging.Exclude On
Annotations Off
Labels On
[FILTER]
Name modify
Match kubernetes.*
Add source kubernetes
Remove logtag
customParsers: |
[PARSER]
Name audit
Format json
Time_Key requestReceivedTimestamp
Time_Format %Y-%m-%dT%H:%M:%S.%L%z
[PARSER]
Name containerd
Format regex
Regex ^(?<time>[^ ]+) (?<stream>stdout|stderr) (?<logtag>[^ ]*) (?<log>.*)$
Time_Key time
Time_Format %Y-%m-%dT%H:%M:%S.%L%z
outputs: |
[OUTPUT]
Name stdout
Alias stdout
Match *
Format json_lines
# If you wish to ship directly to Loki from Fluentbit,
# Uncomment the following output, updating the Host with your Loki DNS/IP info as necessary.
# [OUTPUT]
# Name loki
# Match *
# Host loki.loki.svc
# Port 3100
# Labels job=fluentbit
# Auto_Kubernetes_Labels on
daemonSetVolumes:
- name: varlog
hostPath:
path: /var/log
daemonSetVolumeMounts:
- name: varlog
mountPath: /var/log
tolerations:
- operator: Exists
effect: NoSchedule
Next, we will add the helm repo for FluentBit, and deploy it to the cluster.
helm repo add fluent https://fluent.github.io/helm-charts
helm upgrade -i --namespace=kube-system -f fluentd-bit.yaml fluent-bit fluent/fluent-bit
Now we need to find the service IP.
$ kubectl -n kube-system get svc -l app.kubernetes.io/name=fluent-bit
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
fluent-bit ClusterIP 10.200.0.138 <none> 2020/TCP,5170/TCP 108m
Finally, we will change talos log destination with the command talosctl edit mc
.
machine:
logging:
destinations:
- endpoint: "tcp://10.200.0.138:5170"
format: "json_lines"
This example configuration was well tested with Cilium CNI, and it should work with iptables/ipvs based CNI plugins too.
Vector example
Vector is a lightweight observability pipeline ideal for a Kubernetes environment. It can ingest (source) logs from multiple sources, perform remapping on the logs (transform), and forward the resulting pipeline to multiple destinations (sinks). As it is an end to end platform, it can be run as a single-deployment ‘aggregator’ as well as a replicaSet of ‘Agents’ that run on each node.
As Talos can be set as above to send logs to a destination, we can run Vector as an Aggregator, and forward both kernel and service to a UDP socket in-cluster.
Below is an excerpt of a source/sink setup for Talos, with a ‘sink’ destination of an in-cluster Grafana Loki log aggregation service. As Loki can create labels from the log input, we have set up the Loki sink to create labels based on the host IP, service and facility of the inbound logs.
Note that a method of exposing the Vector service will be required which may vary depending on your setup - a LoadBalancer is a good option.
role: "Stateless-Aggregator"
# Sources
sources:
talos_kernel_logs:
address: 0.0.0.0:6050
type: socket
mode: udp
max_length: 102400
decoding:
codec: json
host_key: __host
talos_service_logs:
address: 0.0.0.0:6051
type: socket
mode: udp
max_length: 102400
decoding:
codec: json
host_key: __host
# Sinks
sinks:
talos_kernel:
type: loki
inputs:
- talos_kernel_logs_xform
endpoint: http://loki.system-monitoring:3100
encoding:
codec: json
except_fields:
- __host
batch:
max_bytes: 1048576
out_of_order_action: rewrite_timestamp
labels:
hostname: >-
{{`{{ __host }}`}}
facility: >-
{{`{{ facility }}`}}
talos_service:
type: loki
inputs:
- talos_service_logs_xform
endpoint: http://loki.system-monitoring:3100
encoding:
codec: json
except_fields:
- __host
batch:
max_bytes: 400000
out_of_order_action: rewrite_timestamp
labels:
hostname: >-
{{`{{ __host }}`}}
service: >-
{{`{{ "talos-service" }}`}}